UBC

Autonomic cardiovascular control in Paralympic athletes with spinal cord injury

Christopher R. West, Shirley C Wong & Andrei V Krassioukov

Cardiovascular function during exercise

Autonomic cardiovascular control and exercise performance

West et al. (2013) Medicine and Science in Sport & Exercise; Feb;45(2):261-7

Interim summary

- Spinal cord injury elicits a lesion-dependent impairment in resting cardiovascular function
- Paralympic athletes with cervical/highthoracic SCI exhibit impaired cardiovascular control during exercise
- Markers of exercise performance are accurately predicted by the degree of remaining autonomic control after SCI

Autonomic control in Paralympic athletes with SCI – Lessons from the London2012 Paralympics

- Sample: 57 Paralympic athletes from 14 countries with chronic SCI (C2-L2) were recruited
- Location: Cardiovascular Health Clinic at the London2012 Paralympics

Methods

- Neurological evaluation
- Blood pressure response to sit-up
- Autonomic function via sympathetic skin response

Results

Results

	В	SE	CI (L,U)	p value
Seated SBP (0.64)				
Level of Injury				
T6-L2	Ref			
T1-T5	-6.8	4.9	-16.6, 3.0	0.135
C6-C8	-18.3	5.7	-28.0, -6.1	0.003
C2-C5	-26.9	5.8	-36.8, -13.1	0.000
SSR score				\smile
4-5	Ref			
2-3	-7.6	4.9	-17,6, 2.3	0.130
0-1	-12.9	5.9	-24.7, -1.0	0.035

Results

	Autonomic Complete	Autonomic Incomplete
Total sample (n=44)		
Motor/Sensory Complete		16
Motor/Sensory Incomplete	10	7
Cervical only (n=21)		
Motor/Sensory Complete	8	1
Motor/Sensory Incomplete	10	2
Thoracic only (n=24)		
Motor/Sensory Complete	3	5
Motor/Sensory Incomplete	0	15

Autonomic completeness of injury agrees with neurological completeness of injury < 50% of the time

Implications for athlete health

Conclusion

- We demonstrate for the first time that assessment of lesion-level and autonomic completeness of injury provides the optimal combination to identify those at risk of abnormal cardiovascular control after SCI.
- We also demonstrate for the first time that SCIinduced differences in autonomic cardiovascular control are not reflected in the current clinical classification of Paralympic athletes.
- These findings suggest that more attention should be directed towards autonomic classification within wheelchair sports.

Acknowledgements

Research Team

Prof Andrei Krassioukov Jacquelyn Cragg Melissa Pak Shirley Wong Dmitri Krassioukov-Ens

Members of the IPC SSC

Dr Peter Van de Vliet Dr Yves Vanlandewijck Dr Walt Thompson Greg Vice

Funding

All of the athletes, coaches and translators